pyepo.model.mpax.mpaxmodel
Abstract optimization model based on MPAX
Attributes
Classes
This is an abstract class for MPAX-based optimization model  | 
Module Contents
- pyepo.model.mpax.mpaxmodel._HAS_MPAX = True
 
- class pyepo.model.mpax.mpaxmodel.optMpaxModel(A=None, b=None, G=None, h=None, l=None, u=None, use_sparse_matrix=True, minimize=True)
 Bases:
pyepo.model.opt.optModelThis is an abstract class for MPAX-based optimization model
- A
 The matrix of equality constraints.
- Type:
 jnp.ndarray, BCOO or BCSR
- b
 The right hand side of equality constraints.
- Type:
 jnp.ndarray
- G
 The matrix for inequality constraints.
- Type:
 jnp.ndarray, BCOO or BCSR
- h
 The right hand side of inequality constraints.
- Type:
 jnp.ndarray
- l
 The lower bound of the variables.
- Type:
 jnp.ndarray
- u
 The upper bound of the variables.
- Type:
 jnp.ndarray
- use_sparse_matrix
 Whether to use sparse matrix format, by default True.
- Type:
 bool
- minimize
 Whether to minimize objective, by default True.
- Type:
 bool
- l
 
- u
 
- use_sparse_matrix = True
 
- modelSense = 1
 
- device = None
 
- jitted_solve = None
 
- batch_optimize
 
- __repr__()
 
- property num_cost
 number of cost to be predicted
- setObj(c)
 A method to set objective function
- Parameters:
 c (np.ndarray / list) – cost of objective function
- solve()
 A method to solve model
- Returns:
 optimal solution (list) and objective value (jnp.float32)
- Return type:
 tuple
- static _jitted_solve(c, A, b, G, h, l, u, use_sparse_matrix)
 A static method for JIT complile
- addConstr(coefs, rhs)
 A method to add new constraint
- Parameters:
 coefs (np.ndarray / list) – coeffcients of new constraint
rhs (jnp.float32) – right-hand side of new constraint
- Returns:
 new model with the added constraint
- Return type:
 
- _getModel()
 Placeholder method for MPAX. MPAX does not require an explicit model creation.
- pyepo.model.mpax.mpaxmodel.num_vars = 10