Contents:
[1] Elmachtoub, A. N., & Grigas, P. (2021). Smart “predict, then optimize”. Management Science.
[2] Mandi, J., Stuckey, P. J., & Guns, T. (2020). Smart predict-and-optimize for hard combinatorial optimization problems. In Proceedings of the AAAI Conference on Artificial Intelligence.
[3] Vlastelica, M., Paulus, A., Musil, V., Martius, G., & Rolínek, M. (2019). Differentiation of blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175.
[4] Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., & Bach, F. (2020). Learning with differentiable perturbed optimizers. Advances in neural information processing systems, 33, 9508-9519.
[5] Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M., Bucarey, V., & Guns, T. (2021). Contrastive losses and solution caching for predict-and-optimize. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.
[6] Mandi, J., Bucarey, V., Mulamba, M., & Guns, T. (2022). Decision-focused learning: through the lens of learning to rank. Proceedings of the 39th International Conference on Machine Learning.
[7] Sahoo, S. S., Paulus, A., Vlastelica, M., Musil, V., Kuleshov, V., & Martius, G. (2022). Backpropagation through combinatorial algorithms: Identity with projection works. arXiv preprint arXiv:2205.15213.
[8] Niepert, M., Minervini, P., & Franceschi, L. (2021). Implicit MLE: backpropagating through discrete exponential family distributions. Advances in Neural Information Processing Systems, 34, 14567-14579.
[9] Minervini, P., Franceschi, L., & Niepert, M. (2023, June). Adaptive perturbation-based gradient estimation for discrete latent variable models. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 8, pp. 9200-9208).
[10] Schutte, N., Postek, K., & Yorke-Smith, N. (2023). Robust Losses for Decision-Focused Learning. arXiv preprint arXiv:2310.04328.
[11] Gupta, V., & Huang, M. (2024). Decision-Focused Learning with Directional Gradients. Training, 50(100), 150.