pyepo.metric
Performance evaluation
Submodules
Functions
|
A function to evaluate model performance with MSE |
|
A function to calculate normalized true regret for a batch |
|
A function to evaluate model performance with normalized true regret |
|
A function to calculate normalized unambiguous regret for a batch |
|
A function to evaluate model performance with normalized unambiguous regret |
|
A function to calculate normalized true regret |
|
A function to create sklearn scorer |
|
A function to create Auto-SKlearn scorer |
Package Contents
- pyepo.metric.MSE(predmodel, dataloader)
A function to evaluate model performance with MSE
- Parameters:
predmodel (nn) – a regression neural network for cost prediction
dataloader (DataLoader) – Torch dataloader from optDataSet
- Returns:
MSE loss
- Return type:
float
- pyepo.metric.calRegret(optmodel, pred_cost, true_cost, true_obj)
A function to calculate normalized true regret for a batch
- Parameters:
optmodel (optModel) – optimization model
pred_cost (torch.tensor) – predicted costs
true_cost (torch.tensor) – true costs
true_obj (torch.tensor) – true optimal objective values
- Returns:predmodel
float: true regret losses
- pyepo.metric.regret(predmodel, optmodel, dataloader)
A function to evaluate model performance with normalized true regret
- Parameters:
predmodel (nn) – a regression neural network for cost prediction
optmodel (optModel) – an PyEPO optimization model
dataloader (DataLoader) – Torch dataloader from optDataSet
- Returns:
true regret loss
- Return type:
float
- pyepo.metric.calUnambRegret(optmodel, pred_cost, true_cost, true_obj, tolerance=1e-05)
A function to calculate normalized unambiguous regret for a batch
- Parameters:
optmodel (optModel) – optimization model
pred_cost (torch.tensor) – predicted costs
true_cost (torch.tensor) – true costs
true_obj (torch.tensor) – true optimal objective values
- Returns:
unambiguous regret losses
- Return type:
float
- pyepo.metric.unambRegret(predmodel, optmodel, dataloader, tolerance=1e-05)
A function to evaluate model performance with normalized unambiguous regret
- Parameters:
predmodel (nn) – a regression neural network for cost prediction
optmodel (optModel) – an PyEPO optimization model
dataloader (DataLoader) – Torch dataloader from optDataSet
- Returns:
unambiguous regret loss
- Return type:
float
- pyepo.metric.SPOError(pred_cost, true_cost, model_type, args)
A function to calculate normalized true regret
- Parameters:
pred_cost (numpy.array) – predicted costs
true_cost (numpy.array) – true costs
model_type (ABCMeta) – optModel class type
args (dict) – optModel args
- Returns:
regret loss
- Return type:
float