pyepo.model.mpax
Optimization Model based on MPAX
Submodules
Classes
This is an abstract class for MPAX-based optimization model  | 
|
This class is optimization model for shortest path problem  | 
|
This class is optimization model for relexed knapsack problem  | 
Package Contents
- class pyepo.model.mpax.optMpaxModel(A=None, b=None, G=None, h=None, l=None, u=None, use_sparse_matrix=True, minimize=True)
 Bases:
pyepo.model.opt.optModelThis is an abstract class for MPAX-based optimization model
- A
 The matrix of equality constraints.
- Type:
 jnp.ndarray, BCOO or BCSR
- b
 The right hand side of equality constraints.
- Type:
 jnp.ndarray
- G
 The matrix for inequality constraints.
- Type:
 jnp.ndarray, BCOO or BCSR
- h
 The right hand side of inequality constraints.
- Type:
 jnp.ndarray
- l
 The lower bound of the variables.
- Type:
 jnp.ndarray
- u
 The upper bound of the variables.
- Type:
 jnp.ndarray
- use_sparse_matrix
 Whether to use sparse matrix format, by default True.
- Type:
 bool
- minimize
 Whether to minimize objective, by default True.
- Type:
 bool
- l
 
- u
 
- use_sparse_matrix = True
 
- modelSense = 1
 
- device = None
 
- jitted_solve = None
 
- batch_optimize
 
- __repr__()
 
- property num_cost
 number of cost to be predicted
- setObj(c)
 A method to set objective function
- Parameters:
 c (np.ndarray / list) – cost of objective function
- solve()
 A method to solve model
- Returns:
 optimal solution (list) and objective value (jnp.float32)
- Return type:
 tuple
- static _jitted_solve(c, A, b, G, h, l, u, use_sparse_matrix)
 A static method for JIT complile
- addConstr(coefs, rhs)
 A method to add new constraint
- Parameters:
 coefs (np.ndarray / list) – coeffcients of new constraint
rhs (jnp.float32) – right-hand side of new constraint
- Returns:
 new model with the added constraint
- Return type:
 
- _getModel()
 Placeholder method for MPAX. MPAX does not require an explicit model creation.
- class pyepo.model.mpax.shortestPathModel(grid)
 Bases:
pyepo.model.mpax.mpaxmodel.optMpaxModelThis class is optimization model for shortest path problem
- grid
 Size of grid network
- Type:
 tuple of int
- arcs
 List of arcs
- Type:
 list
- grid
 
- arcs = []
 
- _getArcs()
 A method to get list of arcs for grid network
- Returns:
 arcs
- Return type:
 list
- _constructMatrix()
 Constructs the incidence matrix A, supply/demand vector b, and upper bound u for the shortest path problem.
- Returns:
 Incidence matrix for flow conservation b (jnp.ndarray): Supply/demand vector u (jnp.ndarray): Upper bound for flow variables
- Return type:
 A (jnp.ndarray)
- class pyepo.model.mpax.knapsackModel(weights, capacity)
 Bases:
pyepo.model.mpax.mpaxmodel.optMpaxModelThis class is optimization model for relexed knapsack problem
- _model
 Gurobi model
- Type:
 GurobiPy model
- weights
 Weights of items
- Type:
 np.ndarray / list
- capacity
 Total capacity
- Type:
 np.ndarray / listy
- items
 List of item index
- Type:
 list
- weights
 
- capacity
 
- items
 
- _constructMatrix()
 Constructs the inequality constraint matrix G, right-hand side h, and upper bound u for the knapsack problem.
- Returns:
 Weights of items h (jnp.ndarray): Total capacity u (jnp.ndarray): Upper bound for item selection
- Return type:
 G (jnp.ndarray)