Tutorial
This quickstart guide aims to demonstrate the fundamental mechanisms for utilizing PyEPO and highlights the modeling capabilities of PyEPO on a diverse set of predict-then-optimize problems.
- Model
 - Data
 - Two-stage Method
 - Auto Grad Functions
- Smart Predict-then-Optimize+ Loss (SPO+)
 - Differentiable Black-box Optimizer (DBB)
 - Negative Identity Backpropagation (NID)
 - Differentiable Perturbed Optimizer (DPO)
 - Perturbed Fenchel-Young Loss (PYFL)
 - Implicit Maximum Likelihood Estimator (I-MLE)
 - Adaptive Implicit Maximum Likelihood Estimator (AI-MLE)
 - Noise Contrastive Estimation (NCE)
 - Contrastive Maximum A Posterior Estimation (CMAP)
 - Learning to Rank (LTR)
 - Perturbation Gradient Loss (PG)
 - Parallel Computation
 
 - Solution Pool
 - Training
 - Evaluation