Tutorial
This guide demonstrates how to use PyEPO for modeling and solving predict-then-optimize problems.
- Model
- Data
- Two-Stage Method
- Auto Grad Functions
- Smart Predict-then-Optimize Loss+ (SPO+)
- Differentiable Black-box Optimizer (DBB)
- Negative Identity Backpropagation (NID)
- Differentiable Perturbed Optimizer (DPO)
- Perturbed Fenchel-Young Loss (PFYL)
- Implicit Maximum Likelihood Estimator (I-MLE)
- Adaptive Implicit Maximum Likelihood Estimator (AI-MLE)
- Noise Contrastive Estimation (NCE)
- Contrastive Maximum A Posteriori Estimation (CMAP)
- Learning to Rank (LTR)
- Perturbation Gradient (PG)
- Parallel Computation
- Solution Pool
- Training
- Evaluation