pyepo.model.opt
Abstract optimization model
Classes
This is an abstract class for an optimization model |
|
Union-Find data structure for cycle detection in graphs |
Functions
|
Get list of arcs for a grid network. |
Module Contents
- class pyepo.model.opt.optModel
Bases:
abc.ABCThis is an abstract class for an optimization model
- _model
underlying solver model object
- Type:
optimization model
- __repr__()
- property num_cost
number of costs to be predicted
- abstract _getModel()
An abstract method to build a model from an optimization solver
- Returns:
optimization model and variables
- Return type:
tuple
- abstract setObj(c)
An abstract method to set the objective function
- Parameters:
c (ndarray) – cost of objective function
- abstract solve()
An abstract method to solve the model
- Returns:
optimal solution (list) and objective value (float)
- Return type:
tuple
- abstract addConstr(coefs, rhs)
An abstract method to add a new constraint
- Parameters:
coefs (ndarray) – coefficients of the new constraint
rhs (float) – right-hand side of new constraint
- Returns:
new model with the added constraint
- Return type:
- relax()
An unimplemented method to relax the MIP model
- class pyepo.model.opt.unionFind(n)
Union-Find data structure for cycle detection in graphs
- parent
- find(i)
- union(i, j)
- pyepo.model.opt._get_grid_arcs(grid)
Get list of arcs for a grid network.
- Parameters:
grid (tuple of int) – size of grid network (rows, cols)
- Returns:
arcs as (source, target) tuples
- Return type:
list