pyepo.metric.unambregret
Unambiguous regret loss
Functions
|
A function to evaluate model performance with normalized unambiguous regret |
|
A function to calculate normalized unambiguous regret for a batch |
Module Contents
- pyepo.metric.unambregret.unambRegret(predmodel, optmodel, dataloader, tolerance=1e-05)
A function to evaluate model performance with normalized unambiguous regret
- Parameters:
predmodel (nn) – a regression neural network for cost prediction
optmodel (optModel) – a PyEPO optimization model
dataloader (DataLoader) – Torch dataloader from optDataSet
tolerance (float) – tolerance for optimization
- Returns:
unambiguous regret loss
- Return type:
float
- pyepo.metric.unambregret.calUnambRegret(optmodel, pred_cost, true_cost, true_obj, tolerance=1e-05, max_iter=10)
A function to calculate normalized unambiguous regret for a batch
- Parameters:
optmodel (optModel) – optimization model
pred_cost (torch.tensor) – predicted costs
true_cost (torch.tensor) – true costs
true_obj (torch.tensor) – true optimal objective values
tolerance (float) – tolerance for precision
max_iter (int) – maximum number of recursive retries
- Returns:
unambiguous regret losses
- Return type:
float