pyepo.data.dataset
optDataset class based on PyTorch Dataset
Classes
This class is Torch Dataset for optimization problems. |
|
This class is Torch Dataset for optimization problems, when using the robust kNN-loss. |
Module Contents
- class pyepo.data.dataset.optDataset(model, feats, costs)
Bases:
torch.utils.data.Dataset
This class is Torch Dataset for optimization problems.
- feats
Data features
- Type:
np.ndarray
- costs
Cost vectors
- Type:
np.ndarray
- sols
Optimal solutions
- Type:
np.ndarray
- objs
Optimal objective values
- Type:
np.ndarray
- model
- feats
- costs
- _getSols()
A method to get optimal solutions for all cost vectors
- _solve(cost)
A method to solve optimization problem to get an optimal solution with given cost
- Parameters:
cost (np.ndarray) – cost of objective function
- Returns:
optimal solution (np.ndarray) and objective value (float)
- Return type:
tuple
- __len__()
A method to get data size
- Returns:
the number of optimization problems
- Return type:
int
- __getitem__(index)
A method to retrieve data
- Parameters:
index (int) – data index
- Returns:
data features (torch.tensor), costs (torch.tensor), optimal solutions (torch.tensor) and objective values (torch.tensor)
- Return type:
tuple
- class pyepo.data.dataset.optDatasetKNN(model, feats, costs, k=10, weight=0.5)
Bases:
optDataset
This class is Torch Dataset for optimization problems, when using the robust kNN-loss.
Reference: <https://arxiv.org/abs/2310.04328>
- k
number of nearest neighbours selected
- Type:
int
- weight
weight of kNN-loss
- Type:
float
- feats
Data features
- Type:
np.ndarray
- costs
Cost vectors
- Type:
np.ndarray
- sols
Optimal solutions
- Type:
np.ndarray
- objs
Optimal objective values
- Type:
np.ndarray
- model
- k = 10
- weight = 0.5
- feats
- costs
- _getSols()
A method to get optimal solutions for all cost vectors
- _getKNN()
A method to get kNN costs