pyepo.data.dataset
optDataset class based on PyTorch Dataset
Classes
This class is Torch Dataset for optimization problems.  | 
|
This class is Torch Dataset for optimization problems, when using the robust kNN-loss.  | 
Module Contents
- class pyepo.data.dataset.optDataset(model, feats, costs)
 Bases:
torch.utils.data.DatasetThis class is Torch Dataset for optimization problems.
- feats
 Data features
- Type:
 np.ndarray
- costs
 Cost vectors
- Type:
 np.ndarray
- sols
 Optimal solutions
- Type:
 np.ndarray
- objs
 Optimal objective values
- Type:
 np.ndarray
- model
 
- feats
 
- costs
 
- _getSols()
 A method to get optimal solutions for all cost vectors
- _solve(cost)
 A method to solve optimization problem to get an optimal solution with given cost
- Parameters:
 cost (np.ndarray) – cost of objective function
- Returns:
 optimal solution (np.ndarray) and objective value (float)
- Return type:
 tuple
- __len__()
 A method to get data size
- Returns:
 the number of optimization problems
- Return type:
 int
- __getitem__(index)
 A method to retrieve data
- Parameters:
 index (int) – data index
- Returns:
 data features (torch.tensor), costs (torch.tensor), optimal solutions (torch.tensor) and objective values (torch.tensor)
- Return type:
 tuple
- class pyepo.data.dataset.optDatasetKNN(model, feats, costs, k=10, weight=0.5)
 Bases:
optDatasetThis class is Torch Dataset for optimization problems, when using the robust kNN-loss.
Reference: <https://arxiv.org/abs/2310.04328>
- k
 number of nearest neighbours selected
- Type:
 int
- weight
 weight of kNN-loss
- Type:
 float
- feats
 Data features
- Type:
 np.ndarray
- costs
 Cost vectors
- Type:
 np.ndarray
- sols
 Optimal solutions
- Type:
 np.ndarray
- objs
 Optimal objective values
- Type:
 np.ndarray
- model
 
- k = 10
 
- weight = 0.5
 
- feats
 
- costs
 
- _getSols()
 A method to get optimal solutions for all cost vectors
- _getKNN()
 A method to get kNN costs