pyepo.func.utils
Utility function
Attributes
Classes
creates a generator of samples for the Sum-of-Gamma distribution |
Functions
|
A function to get optimization solution in the forward/backward pass |
|
A function to solve optimization and update solution pool |
|
A function to solve optimization in the forward/backward pass |
|
Add new solutions to solution pool |
|
A function to use solution pool in the forward/backward pass |
|
A function to solve function in parallel processors |
|
A function to check solution is correct |
Module Contents
- pyepo.func.utils._solve_or_cache(cp, module)
A function to get optimization solution in the forward/backward pass
- pyepo.func.utils._solve_in_pass(cp, optmodel, processes, pool, solpool=None, solset=None)
A function to solve optimization and update solution pool
- pyepo.func.utils._solve_batch(cp, optmodel, processes, pool)
A function to solve optimization in the forward/backward pass
- pyepo.func.utils._update_solution_pool(sol, solpool, solset)
Add new solutions to solution pool
- Parameters:
sol (torch.tensor) – new solutions
solpool (torch.tensor) – existing solution pool
solset (set) – hash set for deduplication
- Returns:
updated solution pool
- Return type:
torch.tensor
- pyepo.func.utils._cache_in_pass(cp, optmodel, solpool)
A function to use solution pool in the forward/backward pass
- pyepo.func.utils._worker_model = None
- pyepo.func.utils._worker_model_key = None
- pyepo.func.utils._solveWithObj4Par(cost, args, model_type)
A function to solve function in parallel processors
- Parameters:
cost (np.ndarray) – cost of objective function
args (dict) – optModel args
model_type (ABCMeta) – optModel class type
- Returns:
optimal solution (list) and objective value (float)
- Return type:
tuple
- pyepo.func.utils._check_sol(c, w, z)
A function to check solution is correct