pyepo.metric.metrics ==================== .. py:module:: pyepo.metric.metrics .. autoapi-nested-parse:: Metrics for SKlearn model Functions --------- .. autoapisummary:: pyepo.metric.metrics.SPOError pyepo.metric.metrics.makeSkScorer pyepo.metric.metrics.makeAutoSkScorer pyepo.metric.metrics.testMSE pyepo.metric.metrics.makeTestMSEScorer Module Contents --------------- .. py:function:: SPOError(pred_cost, true_cost, model_type, args) A function to calculate normalized true regret :param pred_cost: predicted costs :type pred_cost: numpy.array :param true_cost: true costs :type true_cost: numpy.array :param model_type: optModel class type :type model_type: ABCMeta :param args: optModel args :type args: dict :returns: regret loss :rtype: float .. py:function:: makeSkScorer(optmodel) A function to create sklearn scorer :param optmodel: optimization model :type optmodel: optModel :returns: callable object that returns a scalar score; less is better. :rtype: scorer .. py:function:: makeAutoSkScorer(optmodel) A function to create Auto-SKlearn scorer :param optmodel: optimization model :type optmodel: optModel :returns: callable object that returns a scalar score; less is better. :rtype: scorer .. py:function:: testMSE(pred_cost, true_cost, model_type, args) A function to calculate MSE for testing :param pred_cost: predicted costs :type pred_cost: array :param true_cost: true costs :type true_cost: array :param model_type: optModel class type :type model_type: ABCMeta :param args: optModel args :type args: dict :returns: mse :rtype: float .. py:function:: makeTestMSEScorer(optmodel) A function to create MSE scorer for testing :param optmodel: optimization model :type optmodel: optModel :returns: callable object that returns a scalar score; less is better. :rtype: scorer